
CS250P: Computer Systems Architecture
Memory System and Caches

Sang-Woo Jun

Fall 2023

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

Eight great ideas

❑ Design for Moore’s Law

❑ Use abstraction to simplify design

❑ Make the common case fast

❑ Performance via parallelism

❑ Performance via pipelining

❑ Performance via prediction

❑ Hierarchy of memories

❑ Dependability via redundancy

Caches are important

“There are only two hard things in computer science:
1. Cache invalidation,
2. Naming things,
3. and off-by-one errors”

Original quote (with only the first two points) by Phil Karlton
I couldn’t find joke source

Motivation Example:
An Embarrassingly Parallel Workload

❑ A very simple example of counting odd numbers in a large array

int results[THREAD_COUNT];
void worker_thread(…) {
 int tid = …;
 for (e in myChunk) {
 if (e % 2 != 0) results[tid]++;
 }
}

Do you see any performance red flags?

Scalability Unimpressive

Scott Meyers, “CPU Caches and Why You Care,” 2013

Originally…

Fetch WritebackDecode Execute Memory

DRAM Memory

Register
File

CPU Chip

DRAM Chips/Cards/…

What is the Y-axis? Most likely normalized latency reciprocal

History of The
Processor/Memory Performance Gap

(and SRAM)

caches introduced
to intel x86
(80386, 80486)

Source: Extreme tech, “How L1 and L2 CPU Caches Work, and Why They’re an Essential Part of Modern Chips,” 2018

What causes the
cost/performance difference? – SRAM

❑ SRAM (Static RAM) vs. DRAM (Dynamic RAM)

❑ SRAM: Register File, Cache
o Constructed entirely out of transistors , which processor logic is made of

o As fast as the rest of the processor

o Subject to propagation delay, etc, which makes large SRAM blocks expensive
and/or slow

Source: Inductiveload, from commons.wikimedia.org

Size – performance trade-off necessary!

What causes the
cost/performance difference? – DRAM

❑ DRAM stores data using a capacitor
o Very small/dense cell

o A capacitor holds charge for a short while, but slowly
leaks electrons, losing data

o To prevent data loss, a controller must periodically read
all data and write it back (“Refresh”)
• Hence, “Dynamic” RAM

o Requires fab process separate from processor

❑ Reading data from a capacitor is high-latency
o EE topics involving sense amplifiers, which we won’t get

into

Source: Dailytech

Note: Old, “trench capacitor” design

What causes the
cost/performance difference? – DRAM
❑ DRAM cells are typically organized into a

rectangle (rows, columns)
o Reduces addressing logic, which is a high

overhead in such dense memory
o Whole row must be read whenever data in new

row is accessed
o Right now, typical row size ~8 KB

❑ Fast when accessing data in same row, order
of magnitude slower when accessing small
data across rows
o Accessed row temporarily stored in DRAM “row

buffer”

Introducing caches

❑ The CPU is (largely) unaware of the underlying memory hierarchy
o The memory abstraction is a single address space

o The memory hierarchy transparently stores data in fast or slow memory,
depending on usage patterns

❑ Multiple levels of “caches” act as interim memory between CPU and
main memory (typically DRAM)
o Processor accesses main memory (transparently) through the cache hierarchy

o If requested address is already in the cache (address is “cached”, resulting in
“cache hit”), data operations can be fast

o If not, a “cache miss” occurs, and must be handled to return correct data to CPU

Caches Try to Be Transparent

❑ Software is (ideally) written to be oblivious to caches
o Programmer should not have to worry about cache properties

o Correctness isn’t harmed regardless of cache properties

❑ However, the performance impact of cache affinity is quite high!
o Performant software cannot be written in a completely cache-oblivious way

History of The
Processor/Memory Performance Gap

Source: Extreme tech, “How L1 and L2 CPU Caches Work, and Why They’re an Essential Part of Modern Chips,” 2018

❑ 80386 (1985) :
Last Intel desktop CPU with no on-chip cache
(Optional on-board cache chip though!)

❑ 80486 (1989) : 4 KB on-chip cache

❑ Coffee Lake (2017) :
64 KiB L1 Per core
256 KiB L2 Per core
Up to 2 MiB L3 Per core (Shared)

What is the Y-axis? Most likely normalized latency reciprocal

A modern computer has
a hierarchy of memory

CPU

Instruction
cache

Data
cache

Shared cache

DRAM

SRAM Caches
Low latency (~1 cycle)
Small (KBs)
Expensive ($1000s per GB)

DRAM
High latency (100s~1000s of cycles)
Large (GBs)
Cheap (<$5 per GB)

Ideal memory:
As cheap and large as DRAM (Or disk!)
As fast as SRAM
…Working on it!

Cost prohibits having a lot of fast memory

Memory bus

Caches and the processor pipeline

Fetch WritebackDecode Execute Memory

Memory

Register
File

L1 Instruction cache L1 Data cache

L2 Data cache

L3 Data cache

DRAM

Off-chip memory interface

Multi-Layer Cache Architecture

L3 $

Core

L1 I$ L1 D$

L2 $

Core

L1 I$ L1 D$

L2 $

Cache Level Size Latency (Cycles)

L1 64 KiB < 5

L2 256 KiB < 20

L3 ~ 2 MiB per core < 50

Numbers from modern Xeon processors (Broadwell – Kaby lake)

❑ Even with SRAM there is a size-performance trade-off
o Not because the transistors are any different!

o Cache management logic becomes more complicated with larger sizes

❑ L1 cache accesses can be hidden in the pipeline
o Modern processors have pipeline depth of 14+

o All others take a performance hit

Multi-Layer Cache Architecture

Cache Level Size Latency (Cycles)

L1 64 KiB < 5

L2 256 KiB < 20

L3 ~ 2 MiB per core < 50

Numbers from modern Xeon processors (Broadwell – Kaby lake)

DRAM 100s of GB > 100*

❑ *This is in an ideal scenario
o Actual measurements could be multiple hundreds or thousands of cycles!

❑ DRAM systems are complicated entities themselves
o Latency/Bandwidth of the same module varies immensely by situation…

L3 $

Core

L1 I$ L1 D$

L2 $

Core

L1 I$ L1 D$

L2 $

Cache operation

❑ One of the most intensely researched fields in computer architecture

❑ Goal is to somehow make to-be-accessed data available in fastest
possible cache level at access time
o Method 1: Caching recently used addresses

• Works because software typically has “Temporal Locality” : If a location has been accessed
recently, it is likely to be accessed (reused) soon

o Method 2: Pre-fetching based on future pattern prediction
• Works because software typically has “Spatial Locality” : If a location has been accessed

recently, it is likely that nearby locations will be accessed soon

o Many, many more clever tricks and methods are deployed!

Basic cache operations

❑ Unit of caching: “Block” or “Cache line”
o May be multiple words -- 64 Bytes in modern Intel x86

❑ If accessed data is present in upper level
o Hit: access satisfied by upper level

❑ If accessed data is absent
o Miss: block copied from lower level

• Time taken: miss penalty

o Then accessed data supplied from upper level

How does the memory system keep track of what is present in cache?

Main memory

Cache

A simple solution: “Direct Mapped Cache”

❑ Cache location determined by address

❑ Each block in main memory mapped on one
location in cache memory (“Direct Mapped”)
o “Direct mapped”

❑ Cache is smaller than main memory, so many
DRAM locations map to one cache location

(Cache addressblock)
= (main memory addressblock) mod (cache sizeblock)

Since cache size is typically power of two,
Cache address is lower bits of block address

e.g.,

Selecting index bits

❑ Why do we chose low order bits for index?
o Allows consecutive memory locations to live in the cache simultaneously

• e.g., 0x0001 and 0x0002 mapped to different slots

o Reduces likelihood of replacing data that may be accessed again in the near future

o Helps take advantage of locality

Tags and Valid Bits

❑ How do we know which particular block is stored in a cache location?
o Store block address as well as the data, compare when read

o Actually, only need the high-order bits (Called the “tag”)

❑ What if there is a cache slot is still unused?
o Valid bit: 1 = present, 0 = not present

o Initially 0

Direct Mapped Cache Access

❑ For cache with 2W cache lines
o Index into cache with W address bits (the index bits)

o Read out valid bit, tag, and data

o If valid bit == 1 and tag matches upper address bits, cache hit!

Example 8-line direct-mapped cache:

Direct-Mapped Cache Problem:
Conflict Misses

❑ Assuming a 1024-line direct-mapped
cache, 1-word cache line

❑ Consider steady state, after already
executing the code once
o What can be cached has been cached

❑ Conflict misses:
o Multiple accesses map to same index!

We have enough cache capacity, just inconvenient access patterns

Other extreme: “Fully associative” cache

❑ Any address can be in any location
o No cache index!

o Flexible (no conflict misses)

o Expensive: Must compare tags of all entries in parallel to find matching one

❑ Best use of cache space (all slots will be useful)

❑ But management circuit overhead is too large

Three types of misses

❑ Compulsory misses (aka cold start misses)
o First access to a block

❑ Capacity misses
o Due to finite cache size

o A replaced block is later accessed again

❑ Conflict misses (aka collision misses)
o Conflicts that happen even when we have space left

o Due to competition for entries in a set

o Would not occur in a fully associative cache of the same total size
Empty space can always be used in a fully associative cache
(e.g., 8 KiB data, 32 KiB cache, but still misses? Those are conflict misses)

Balanced solution:
N-way set-associative cache

❑ Use multiple direct-mapped caches in parallel to reduce conflict misses

❑ Nomenclature:
o # Rows = # Sets

o # Columns = # Ways

o Set size = #ways = “set associativity”
(e.g., 4-way -> 4 lines/set)

❑ Each address maps to only one set,
but can be in any way within the set

❑ Tags from all ways are checked
in parallel

Spectrum of associativity
(For eight total blocks)

V D Tag Data V D Tag Data V D Tag Data V D Tag Data V D Tag Data V D Tag Data V D Tag Data

V D Tag Data V D Tag Data V D Tag Data V D Tag Data V D Tag Data V D Tag Data V D Tag Data V D Tag Data

One-way set-associative
(Direct-Mapped) Two-way set-associative Four-way set-associative

Eight-way set-associative (Fully associative)

Each “Data” is a cache line (~64 bytes), needs another mux layer to get actual word

Associativity example

❑ Compare caches with four elements
o Block access sequence: 0, 8, 0, 6, 8

❑ Direct mapped (Cache index = address mod 4)

Block

address

Cache

index

Hit/miss Cache content after access

0 1 2 3

0 0 miss Mem[0]

8 0 miss Mem[8]

0 0 miss Mem[0]

6 2 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

Time

Associativity example

❑ 2-way set associative (Cache index = address mod 2)

❑ Fully associative (No more cache index!)

Block

address

Cache

index

Hit/miss Cache content after access

Set 0 Set 1

0 0 miss Mem[0]

8 0 miss Mem[0] Mem[8]

0 0 hit Mem[0] Mem[8]

6 0 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

Time

Block

address

Hit/miss Cache content after access

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[8] Mem[6]

8 hit Mem[0] Mem[8] Mem[6]

Time

How Much Associativity?

❑ Increased associativity decreases miss rate
o But with diminishing returns

❑ Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
o 1-way: 10.3%

o 2-way: 8.6%

o 4-way: 8.3%

o 8-way: 8.1%

How much associativity,
how much size?

❑ Highly application-dependent!

Piscione Pietro and Villardita Alessio, “Coherence and consistency models in multiprocessor architecture,” University of Pisa Computer Architecture, 2015

For integer portion of SPEC CPU2000

Capacity misses

Conflict misses

Compulsory misses

Associativity implies choice during misses

Direct-mapped N-way set-associative

Only one place an address can go
In case of conflict miss, old data is simply evicted

Multiple places an address can go
In case of conflict miss, which way should we evict?

What is our “replacement policy”?

Replacement policies

❑ Optimal policy (Oracle policy):
o Evict the line accessed furthest in the future

o Impossible: Requires knowledge of the future!

❑ Idea: Predict the future from looking at the past
o If a line has not been used recently, it’s often less likely to be accessed in the near

future (temporal locality argument)

❑ Least Recently Used (LRU): Replace the line that was accessed furthest in
the past
o Works well in practice

o Needs to keep track of ordering, and discover oldest line quickly

Pure LRU requires complex logic: Typically implements cheap approximations of LRU

Other replacement policies

❑ LRU becomes very bad if working set becomes larger than cache size
o “for (i = 0 to 1025) A[i];”, if cache is 1024 elements large, every access is miss

❑ Some alternatives exist
o Effective in limited situations, but typically not as good as LRU on average

o Most recently used (MRU), First-In-First-Out (FIFO), random, etc …

o Sometimes used together with LRU

Larger block (cache line) sizes

❑ Take advantage of spatial locality: Store multiple words per data line
o Always fetch entire block (multiple words) from memory

o Another advantage: Reduces size of tag memory!

o Disadvantage: Fewer indices in the cache -> Higher miss rate!

Example: 4-block, 16-word direct-mapped cache

Cache miss with larger block

❑ 64 elements with block size == 4 words
o 16 cache lines, 4 index bits

❑ Write 0x9 to 0x483C
o 0100 1000 0011 1100

❑ Write 0x1 to 0x4938
o 0100 1001 0011 1000

11

V D Tag

01

00

0x4801

00

0

1

2

3

15

…

Data

Tag: 0x48 Index: 0x3

Block offset: 0x3

0x91

-> Cache hit!

Tag: 0x49 Index: 0x3

Block offset: 0x2

-> Cache miss!

Cache miss with larger block

❑ Write 0x1 to 0x4938
o 0100 1001 0011 1000

❑ Since D == 1,
o Write cache line 3 to memory

(All four words)

o Load cache line from memory
(All four words)

o Apply write to cache

11

V D Tag

01

00

0x4801

00

0

1

2

3

15

…

Data

0x91

Tag: 0x49 Index: 0x3

Block offset: 0x2

0 0x49 0x0 0x32 0x8 0x10x11

Writes/Reads four data elements just to write one!

Block size trade-offs

❑ Larger block sizes…
o Take advantage of spatial locality (also, DRAM is faster with larger blocks)

o Incur larger miss penalty since it takes longer to transfer the block from memory

o Can increase the average hit time and miss ratio

❑ AMAT (Average Memory Access Time) = HitTime+MissPenalty*MissRatio

Performance improvements with caches

❑ Given CPU of CPI = 1, clock rate = 4GHz
o Main memory access time = 100ns

o Miss penalty = 100ns/0.25ns = 400 cycles

o CPI without cache = 400

❑ Given first-level cache with no latency, miss rate of 2%
o Effective CPI = 1 + 0.02 × 400 = 9

❑ Adding another cache (L2) with 5ns access time, miss rate of 0.5%
o Miss penalty = 5ns/0.25ns = 20 cycles

o New CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
Base L1 L2

CPI Improvements 400 9 3.4

IPC improvements 0.0025 0.11 0.29

Normalized performance 1 44 118

Real-world: Intel Haswell i7

❑ Four layers of caches (two per-core layers, two shared layers)
o Larger caches have higher latency

o Want to achieve both speed and hit rate!

❑ The layers
o L1 Instruction & L1 Data:

32 KiB, 8-way set associative

o L2: 256 KiB, 8-way set associative

o L3: 6 MiB, 12-way set associative

o L4: 128 MiB, 16-way set associative
eDRAM!

CPU

Instruction
cache

Data
cache

L2 cache

L3 cache

L4 cache

CoreCoreCore Core

Real-world: Intel Haswell i7

❑ Cache access latencies
o L1: 4 - 5 cycles

o L2: 12 cycles

o L3: ~30 - ~50 cycles

❑ For reference, Haswell as 14 pipeline stages

As soon as we miss L1 cache, there is performance overhead!

Multi-Core Memory System Architecture

L3 $

QPI / UPI

DRAM DRAM

Core

L1 I$ L1 D$

L2 $

Package

Core

L1 I$ L1 D$

L2 $

L3 $

Core

L1 I$ L1 D$

L2 $

Package

Core

L1 I$ L1 D$

L2 $

Two packages make up a
NUMA
(Non-Uniform Memory Access)
Configuration

Memory System Bandwidth Snapshot

QPI / UPI

DRAM DRAM

Core Core

DDR4 2666 MHz
128 GB/s

Ultra Path Interconnect
Unidirectional

20.8 GB/s

Cache Bandwidth Estimate
64 Bytes/Cycle ~= 200 GB/s/Core

Memory/PCIe controller used to be on a separate “North bridge” chip, now integrated on-die
All sorts of things are now on-die! Even network controllers! (Specialization!)

Reminder: Cache Coherency

❑ Cache coherency
o Informally: Read to each address must return the most recent value

o Typically: All writes must be visible at some point, and in proper order

❑ Coherency protocol implemented between each core’s private caches
o MSI, MESI, MESIF, …

o Won’t go into details here

❑ Simply put:
o When a core writes a cache line

o All other instances of that cache line needs to be invalidated

❑ Emphasis on cache line

Cache Prefetching

❑ CPU speculatively prefetches cache lines
o While CPU is working on the loaded 64 bytes, 64 more bytes are being loaded

❑ Hardware prefetcher is usually not very complex/smart
o Sequential prefetching (N lines forward or backwards)

o Strided prefetching

❑ Programmer-provided prefetch hints
o __builtin_prefetch(address, r/w, temporal locality?); for GCC

o Will generate prefetch instructions if available on architecture

Now That’s Out of The Way…

CS250P: Computer Systems Architecture
Performance Engineering with Caches

Sang-Woo Jun

Fall 2023

Cache Efficiency Issue #1: Cache Line Size
Matrix Multiplication and Caches

❑ Multiplying two NxN matrices (C = A × B)

for (i = 0 to N)
 for (j = 0 to N)
 for (k = 0 to N)
 C[i][j] += A[i][k] * B[k][j]

…

…
×

A B

=

C

2048*2048 on a i5-7400 @ 3 GHz using GCC –O3 = 63.19 seconds

is this fast?

Whole calculation requires 2K * 2K * 2K = 8 Billion floating-point mult + add
At 3 GHz, ~5 seconds just for the math. Over 1000% overhead!

Cache Efficiency Issue #1: Cache Line Size
Matrix Multiplication and Caches

❑ Column-major access makes inefficient use of cache lines
o A 64 Byte block is read for each element loaded from B

o 64 bytes read from memory for each 4 useful bytes

❑ Shouldn’t caching fix this? Unused bits should be useful soon!
o 64 bytes x 2048 = 128 KB … Already overflows L1 cache (~32 KB)

…

×

A B

=

C

for (i = 0 to N)
 for (j = 0 to N)
 for (k = 0 to N)
 C[i][j] += A[i][k] * B[k][j]

…

Cache Efficiency Issue #1: Cache Line Size
Matrix Multiplication and Caches

❑ One solution: Transpose B to match cache line orientation
o Does transpose add overhead? Not very much as it only scans B once

❑ Drastic improvements!
o Before: 63.19s

o After: 10.39s … 6x improvement!

o But still not quite ~5s

…

×

A BT

=

C

for (i = 0 to N)
 for (j = 0 to N)
 for (k = 0 to N)
 C[i][j] += A[i][k] * Bt[j][k]

` ……

Cache Efficiency Issue #2:
Capacity Considerations

❑ Performance is best when working set fits into cache
o But as shown, even 2048 x 2048 doesn’t fit in cache

o -> 2048 * 2048 * 2048 elements read from memory for matrix B

❑ Solution: Divide and conquer! – Blocked matrix multiply
o For block size 32 × 32 -> 2048 * 2048 * (2048/32) reads

×

A B

A1 B1

B2

C

=
B3

C1

C1 sub-matrix = A1×B1 + A2×B2 + A3×B3 …

A2 A3

Blocked Matrix Multiply Evaluations

Benchmark Elapsed (s) Normalized
Performance

Naïve 63.19 1

Transposed 10.39 6.08

Blocked Transposed 7.35 8.60

❑ Blocked Transposed bottlenecked by computation
o Peak theoretical FLOPS for my processor running at 3 GHz ~= 3 GFLOPS

o 7.35s for matrix multiplication ~= 2.18 GFLOPS

o Not bad, considering need for branches and other instructions!

o L1 cache access now optimized, but not considers larger caches

Blocked Matrix Multiply Evaluations
Benchmark Elapsed (s) Normalized

Performance

Naïve 63.19 1

Transposed 10.39 6.08

Blocked (32) 7.35 8.60

AVX Transposed 2.20 28.72

Blocked (32) AVX 1.50 42.13

4 Thread Blocked (32) AVX 1.09 57.97

Bottlenecked by computation

Bottlenecked by memory

Bottlenecked by processor

❑ AVX Transposed reading from DRAM at 14.55 GB/s
o 20483 * 4 (Bytes) / 2.20 (s) = 14.55 GB/s

o 1x DDR4 2400 MHz on machine -> 18.75 GB/s peak

o Pretty close! Considering DRAM also used for other things (OS, etc)

❑ Multithreaded getting 32 GB/s effective bandwidth
o Cache effects with small chunks

Bottlenecked by memory (Not scaling!)

Aside: Cache oblivious algorithms

❑ For sub-block size B × B -> N * N * (N/B) reads. What B do we use?
o Optimized for L1? (32 KiB for me, who knows for who else?)

o If B*B exceeds cache, sharp drop in performance

o If B*B is too small, gradual loss of performance

❑ Do we ignore the rest of the cache hierarchy?
o Say B optimized for L3,

B × B multiplication is further divided into T×T blocks for L2 cache

o T × T multiplication is further divided into U×U blocks for L1 cache

o … If we don’t, we lose performance

❑ Class of “cache-oblivious algorithms”
Typically recursive definition of data structures…

Aside: Recursive Matrix Multiplication

C11

=

C

C12

C21 C22

A11

×

A

A12

A21 A22

B11

B

B12

B21 B22

=
A11B11

A21B11

A11B12

A21B12

+
A12B21

A22B21

A12B22

A22B22

8 multiply-adds of (n/2) × (n/2) matrices
Recurse down until very small

Performance Analysis

❑ Work:
o Recursion tree depth is log2(N), each node fan-out is 8

o 8log2 𝑁 = 𝑁log2 8 = 𝑁3

o Same amount of work!

❑ Cache misses:
o Recurse tree for cache access has depth log(N)-1/2(log(cM))

• (Because we stop recursing at n2 < cM for a small c)

o So number of leaves = 8log 𝑁−1/2 log 𝑐𝑀 = 𝑁log 8 ÷ 𝑐𝑀1/2 log 8 = 𝑁3/𝑐𝑀3/2

o At leaf, we load 𝑐𝑀/𝐵 cache lines

o Total cache lines read = 𝜃(
𝑛3

𝐵𝑀1/2) <- Optimal

Also, logN function call overhead is not high

Performance Oblivious to Cache Size

Steven G. Johnson, “Experiments with Cache-Oblivious Matrix Multiplication for 18.335,” MIT Applied Math

Double precision, 2.66GHz Intel Core 2 Duo

Blocked Matrix Multiply Evaluations
Benchmark Elapsed (s) Normalized

Performance

Naïve 63.19 1

Transposed 10.39 6.08

Blocked (32) 7.35 8.60

AVX Transposed 2.20 28.72

Blocked (32) AVX 1.50 42.13

4 Thread Blocked (32) AVX 1.09 57.97

Cache-Oblivious AVX 0.45 140.42

4 Thread Cache-Oblivious AVX 0.28 225.68

❑ Using FMA SIMD, Cache-Oblivious AVX gets 19 GFLOPS
o Theoretical peak is 3 GHz x 8 way SIMD == 24 GFLOPS… Close!

140x performance increase compared to the baseline!

Writing Cache Line Friendly Software

❑ (Whenever possible) use data in coarser-granularities
o Each access may load 64 bytes into cache, make use of them!

o e.g., Transposed matrix B in matrix multiply, blocked matrix multiply

❑ Many profilers will consider the CPU “busy” when waiting for cache
o Can’t always trust “CPU utilization: 100%”

Merge Sort

Source: https://imgur.com/gallery/voutF, created by morolin

Depth-first Breadth-first

https://imgur.com/gallery/voutF

Merge Sort Cache Effects

❑ Depth-first binary merge sort is relatively cache efficient
o Log(N) full accesses on data, for blocks larger than M

o n × log(
𝑛

𝑀
)

❑ Binary merge sort of higher fan-in (say, R) is more cache-efficient
o Merge output directly re-used without spilling into memory

o Using a tournament of mergers!

o n × log𝑅(
𝑛

𝑀
)

❑ Cache obliviousness: how to choose R?
o Too large R spills merge out of cache -> Thrash -> Performance loss!

R

Lazy K-Merger

…

k

❑ Again, recursive definition of mergers!

❑ Each sub-merger has k3 element output buffer

❑ Second level has 𝑘 + 1 sub-mergers
o 𝑘 sub-mergers feeding into 1 sub-merger

o Each sub-merger has 𝑘 inputs

o 𝑘3/2-element buffer per bottom sub-merger

o Recurses until very small fan-in (two?)

…

k3

k3/2

Lazy K-Merger

while v’s output buffer is not full
 if left input buffer empty
 Fill(left child of v)
 if right input buffer empty
 Fill(right child of v)
 perform one merge step

Procedure Fill(v):

❑ Each k merger fits in k2 space

❑ Ideal cache effects!
o Proof too complex to show today…

❑ What should k be?
o Given N elements, k = N(1/3) – “Funnelsort”

In-Memory
Funnelsort Empirical Performance

Improvement!

Overhead…

Source: Brodal et. al., “Engineering a Cache-Oblivious Sorting Algorithm,” 2008

gcc: std::sort
Funnelsort 2 vs 4:
2-way or 4-way basic merger

In-Memory
Funnelsort Empirical Performance

Overhead…

Source: Brodal et. al., “Engineering a Cache-Oblivious Sorting Algorithm”

P4 had faster memory access than Athlon
Performance bottlenecked by computation

In-Storage
Funnelsort Empirical Performance

Storage-optimized
Library!

Improvement!

Source: Brodal et. al., “Engineering a Cache-Oblivious Sorting Algorithm”

Aside:
Object-Oriented Programming And Caches

❑ OOP wants to collocate all data for an entity in a class/struct
o All instance variables are located together in memory

❑ Cache friendly OOP
o All instance variables are accessed whenever an instance is accessed

❑ Cache unfriendly OOP
o Only a small subset of instance variables are accessed per instance access

o e.g., a “for” loop checking the “valid” field of all entities
• 1 byte accessed per cache line read!

❑ Non-OOP solution: Have a separate array for “valid”s
o Is this a desirable solution? Maybe…

Cache Efficiency Issue #3:
False Sharing

❑ Different memory locations, written to by different cores, mapped to
same cache line
o Core 1 performing “results[0]++;”

o Core 2 performing “results[1]++;”

❑ Remember cache coherence
o Every time a cache is written to, all other instances need to be invalidated!

o “results” variable is ping-ponged across cache coherence every time

o Bad when it happens on-chip, terrible over processor interconnect (QPI/UPI)

❑ Simple solution: Store often-written data in local variables

Removing False Sharing

Aside: Non Cache-Related Optimizations:
Loop Unrolling

❑ Increase the amount of work per loop iteration
o Improves the ratio between computation instructions and branch instructions

o Compiler can be instructed to automatically unroll loops

o Increases binary size, because unrolled iterations are now duplicated code

Source: Wikipedia “Loop unrolling”

Aside: Non Cache-Related Optimizations:
Function Inlining

❑ A small function called very often may be bottlenecked by call overhead

❑ Compiler copies the instructions of a function into the caller
o Removes expensive function call overhead (stack management, etc)

o Function can be defined with “inline” flag to hint the compiler
• “inline int foo()”, instead of “int foo()”

❑ Personal anecdote
o Inlining a key (very small) kernel function resulted in a 4x performance boost

Issue #4
Instruction Cache Effects

❑ Instructions are also stored in cache
o L1 cache typically has separate instances for instruction and data caches

• In most x86 architectures, 32 KiB each

• L2 onwards are shared

o Lots of spatial locality, so miss rate is usually very low
• On SPEC, ~2% at L1

o But adversarial examples can still thrash the cache

❑ Instruction cache often has dedicated prefetcher
o Understands concepts of branches and function calls

o Prefetches blocks of instructions without branches

Optimizing Instruction Cache

❑ Instruction cache misses can effect performance
o “Linux was routing packets at ~30Mbps [wired], and wireless at ~20. Windows CE

was crawling at barely 12Mbps wired and 6Mbps wireless.

o […] After we changed the routing algorithm to be more cache-local, we started
doing 35Mbps [wired], and 25Mbps wireless – 20% better than Linux.
– Sergey Solyanik, Microsoft

o [By organizing function calls in a cache-friendly way, we] achieved a 34% reduction
in instruction cache misses and a 5% improvement in overall performance.
-- Mircea Livadariu and Amir Kleen, Freescale

Improving Instruction Cache Locality #1

❑ Careful with loop unrolling
o They reduce branching overhead, but reduces effective I$ size

o When gcc’s –O3 performs slower than –O2, this is usually what’s happening

❑ Careful with function inlining
o Inlining is typically good for very small* functions

o A rarely executed path will just consume cache space if inlined

❑ Move conditionals to front as much as possible
o Long paths of no branches good fit with instruction cache/prefetcher

Improving Instruction Cache Locality #2

❑ Organize function calls to create temporal locality

Baseline: Sequential algorithm

Livadariu et. al., “Optimizing for instruction caches,” EETimes

If the functions stage_I, stage_II, and stage_III
are sufficiently large, their instructions will
thrash the instruction cache!

Improving Instruction Cache Locality #2

❑ Organize function calls to create temporal locality

Ordering changed for
cache locality

Livadariu et. al., “Optimizing for instruction caches,” EETimes

Baseline: Sequential algorithm

New array “temp” takes up
space. N could be large!

Improving Instruction Cache Locality #2

❑ Organize function calls to create temporal locality

Ordering changed for
cache locality

Livadariu et. al., “Optimizing for instruction caches,” EETimes

Baseline: Sequential algorithm Balance to reduce
memory footprint

	Slide 1: CS250P: Computer Systems Architecture Memory System and Caches
	Slide 2: Eight great ideas
	Slide 3: Caches are important
	Slide 4: Motivation Example: An Embarrassingly Parallel Workload
	Slide 5: Scalability Unimpressive
	Slide 6: Originally…
	Slide 7: History of The Processor/Memory Performance Gap
	Slide 8: What causes the cost/performance difference? – SRAM
	Slide 9: What causes the cost/performance difference? – DRAM
	Slide 10: What causes the cost/performance difference? – DRAM
	Slide 11: Introducing caches
	Slide 12: Caches Try to Be Transparent
	Slide 13: History of The Processor/Memory Performance Gap
	Slide 14: A modern computer has a hierarchy of memory
	Slide 15: Caches and the processor pipeline
	Slide 16: Multi-Layer Cache Architecture
	Slide 17: Multi-Layer Cache Architecture
	Slide 18: Cache operation
	Slide 19: Basic cache operations
	Slide 20: A simple solution: “Direct Mapped Cache”
	Slide 21: Selecting index bits
	Slide 22: Tags and Valid Bits
	Slide 23: Direct Mapped Cache Access
	Slide 24: Direct-Mapped Cache Problem: Conflict Misses
	Slide 25: Other extreme: “Fully associative” cache
	Slide 26: Three types of misses
	Slide 27: Balanced solution: N-way set-associative cache
	Slide 28: Spectrum of associativity (For eight total blocks)
	Slide 29: Associativity example
	Slide 30: Associativity example
	Slide 31: How Much Associativity?
	Slide 32: How much associativity, how much size?
	Slide 33: Associativity implies choice during misses
	Slide 34: Replacement policies
	Slide 35: Other replacement policies
	Slide 36: Larger block (cache line) sizes
	Slide 37: Cache miss with larger block
	Slide 38: Cache miss with larger block
	Slide 39: Block size trade-offs
	Slide 40: Performance improvements with caches
	Slide 41: Real-world: Intel Haswell i7
	Slide 42: Real-world: Intel Haswell i7
	Slide 43: Multi-Core Memory System Architecture
	Slide 44: Memory System Bandwidth Snapshot
	Slide 45: Reminder: Cache Coherency
	Slide 46: Cache Prefetching
	Slide 47: Now That’s Out of The Way…
	Slide 48: CS250P: Computer Systems Architecture Performance Engineering with Caches
	Slide 49: Cache Efficiency Issue #1: Cache Line Size Matrix Multiplication and Caches
	Slide 50: Cache Efficiency Issue #1: Cache Line Size Matrix Multiplication and Caches
	Slide 51: Cache Efficiency Issue #1: Cache Line Size Matrix Multiplication and Caches
	Slide 52: Cache Efficiency Issue #2: Capacity Considerations
	Slide 53: Blocked Matrix Multiply Evaluations
	Slide 54: Blocked Matrix Multiply Evaluations
	Slide 55: Aside: Cache oblivious algorithms
	Slide 56: Aside: Recursive Matrix Multiplication
	Slide 57: Performance Analysis
	Slide 58: Performance Oblivious to Cache Size
	Slide 59: Blocked Matrix Multiply Evaluations
	Slide 60: Writing Cache Line Friendly Software
	Slide 61: Merge Sort
	Slide 62: Merge Sort Cache Effects
	Slide 63: Lazy K-Merger
	Slide 64: Lazy K-Merger
	Slide 65: In-Memory Funnelsort Empirical Performance
	Slide 66: In-Memory Funnelsort Empirical Performance
	Slide 67: In-Storage Funnelsort Empirical Performance
	Slide 68: Aside: Object-Oriented Programming And Caches
	Slide 69: Cache Efficiency Issue #3: False Sharing
	Slide 70: Removing False Sharing
	Slide 71: Aside: Non Cache-Related Optimizations: Loop Unrolling
	Slide 72: Aside: Non Cache-Related Optimizations: Function Inlining
	Slide 73: Issue #4 Instruction Cache Effects
	Slide 74: Optimizing Instruction Cache
	Slide 75: Improving Instruction Cache Locality #1
	Slide 76: Improving Instruction Cache Locality #2
	Slide 77: Improving Instruction Cache Locality #2
	Slide 78: Improving Instruction Cache Locality #2

